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Abstract 

Animation is one of the useful contemporary educational technologies in teaching complex 

subjects. There is a growing interest in proper use of learner-technology interaction to 

promote learning quality for different groups of learner needs. The purpose of this study is 

to investigate if an interaction approach supports weak learners, who have poor domain 

knowledge and comprehension difficulty of the learning subject, in complex animation 

learning. Three interaction approaches were designed and evaluated in an educational 

animation program teaching a complex subject of data structures. Participants were 70 

undergraduate students performed poorly in the experimental course of introductory data 

structures. They were randomly assigned into one of the three interaction approaches: pure-

reason-dialogue, predict-oriented, and reason-predict-combination interactions. Learning 

effects of these interaction approaches were measured by near-transfer and far-transfer 

tests as well as learning process surveys including perceived content difficulty, mental effort 

expenditure, and usefulness of the interaction approach. Findings indicate that the reason-

predict-combination interactions approach led to the greatest transfer performance and 

was rated by students as the most useful interaction approach for understanding the 

animation content. The findings generally recommend that for weak learners, interactions 

of reasoning dialogue is effective to develop near-transfer ability at the initial learning phase, 

whereas when learners’ knowledge grows to be capable of near-transfer task, the predict-

oriented interactions become more helpful to gain far-transfer knowledge. Implications for 

design principles for interactive instructional animations and recommendations for future 

research are discussed. 

Keywords: Human-computer interaction; Instructional animation; Weak learner; 

Data structures 

 
 

Introduction 
 
Nowadays, animation is considered as a useful instructional medium to depict complex subjects 
that involve extensive mental imagination for understanding such as cardiovascular system, 
meteorological phenomena, and computer data structures and algorithms. The educational 
power of animation is that it can help learners directly visualize temporal changes in state, shape 
and space of dynamic contents, and hence free up learners’ mental resources from memorizing 
trivial object/event changes to performing important cognitive processes.  
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Although animations have great educational potential, research evidence about their 
educational effectiveness is mixed. While some empirical studies show positive effects of 
animations on learning (Levy, Ben-Ari, & Uronen, 2003; Yeh, Chen, Hung, & Hwang, 2010). Other 
studies have found neutral effects (ChanLin, 1998; Morrison & Tversky, 2001; Price, 2002) or 
even negative effects (Scheiter, Gerjets, & Catrambone, 2006; Schnotz, Böckheler, & Grzondzeil, 
1999). One possible reason explaining no/negative effects might be that learners often are 
passive information receivers in animation learning, and tend not to actively reflect animation 
contents (Hundhausen, Douglas, & Stasko, 2002).  
 
To help learners taking advantages of animations, various interactions are used (Mayer & 
Mareno, 2002). The animation-interactivity operation and reasoning dialogue-cannot only 
increase learning involvement and learning responsibility, but also trigger off necessary cognitive 
processes for understanding (Betrancout, 2005). To be effective, interactions must be well 
designed in accordance with learners’ zone of proximal development (ZPD) (Vygotsky, 1978). The 
ZPD of a learner refers the knowledge and cognitive skills he/she can reach with interactions’ 
assistance. Interactions that are not tailored to learner’s ZPD, i.e. too simple to challenge new 
knowledge or too hard to respond, often results in “redundant effect” (Yeh et al., 2010), 
detracting learners from important cognitive processes. 
 
In general, learners differ in ZPD. In addition, with learning progress, learners’ ZPD may vary. 
Therefore, how interactions adjust its scaffolding strategy to timely stratify the varying ZPD of a 
learner is an important issue in educational technology research. Up to date, the design 
principles for dynamically adaptive to learner’s varying ZPD remain unclear in literature on 
multimedia-animation learning and are needed more empirical studies. Therefore, this study 
intends to investigate how interactions can be made to better support learners from little 
cognitive skills to being more knowledgeable in animation learning. This study focused on 
dynamic interaction design for weak learners, who have little cognitive skills and have 
comprehension difficulty in the learning subject on their own, because they are especially 
sensitive to the interventions from interactions. Unlike knowledgeable learners have clear 
learning plans and are less affected by untailored interactions, weak learners largely depend on 
interactions to supplement their weak cognitive skills and scaffold them to cope with the 
learning challenge. For weak learners tailored interactions would make learning easier and 
effective, otherwise making learning more difficult. It is important to assess the impact of an 
interaction approach to weak learners.  
 
 

Effective Interactions in Educational Animations 
 
Interactions in forms of reasoning dialogue and predicting operations have been found 
significantly promoting animation learning (Byrne, Catrambone, & Stasko, 1999; Yeh et al., 2010). 
Reasoning dialogue generally assists learners to propose reasons from the perspective of domain 
principles to support the animation actions and operations. The dialogue of interaction helps 
learners to relate animating content with its underlying domain rationales and principles. It 
assists learners to connect existing knowledge from schema with new knowledge presented in 
the animation and integrate them into a new, comprehensive knowledge structure of the 
learning subject. However, if learners are already able to spontaneously integrate related 
information into knowledge chunks, the external reason-dialogue interaction may become 
redundant (Sweller, 2005), consuming learner’s limited mental resources on acquainted 
cognitive skills and thereby interfering learning.  
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Accordingly, when learners already have general schema of the learning subject, the focus of 
interactions might better shift to verifying understanding. For example, guiding learners to 
sequentially predict what will be acted on the next scene of the animation might be a good 
method to diagnose the understanding about the animating content and stimulate the learner 
to amend misconceptions if any. In a predict-oriented interaction environment, the learner is 
prompted to predict operation(s)/event(s) going to act on the next scene of the animation. The 
predict-oriented interaction keeps on prompting the learner to predict upcoming events of the 
animation scene-by-scene until the learner makes an incorrect prediction. Once the learner 
makes a wrong prediction, the animation starts up to play out the correct operations and then 
prompt the learner to provide reasons to justify the animation’s demonstration.  
 
For weak learners learning with complex animations, previous research (Yeh et al., 2010) 
indicates that the reason-dialogue interaction is more beneficial than the predict-oriented 
interaction at the initial learning phase. The reason is when used at the initial phase of learning, 
the predict-oriented interaction is rather mental loading for weak learners because they usually 
have no sufficient knowledge to generate meaningful predictions. Instead, it mostly triggers 
weak learners to trial-and error or guessing, little helpful for deep understanding and systematic 
schema construction. However, with learning progress, weak learners may advance in cognitive 
skills and learning ability. Hence, the later phase of learner-animation interaction might better 
focus on motivating learners into generate procedure to-be-learned and verify their 
understanding learned at the previous phase. Whether the predict-oriented interaction 
approach is useful for weak learners at the later phase of animation learning is unknown.  
 
In past research, the investigation of interaction effects to animation learning almost focus on 
the first animation practice at the initial learning phase of novice learners. However, students, 
especially weak learners, mostly practice with more than one animation before they thoroughly 
build the new knowledge to-be-learned. Therefore, it is important to explore what interaction 
approaches can effectively lead weak learners to systematic knowledge acquisition through a 
learning process involving multiple animation practices. To address the issue, the main purpose 
of this study is to investigate an interaction approach beneficial weak learners in an animation 
learning environment teaching a complex subject of data structures from the initial to the later 
animation practices. For the purpose, we compared three potentially useful interaction 
approaches: pure-reason-dialogue interaction, predict-orientated interaction, and reason-
predict-combination interaction, and examined which has the best effects to the entire 
animation learning of weak learners.  
 
The study has three sub-purposes to answer the research questions that together make up the 
main purpose of this study. The three sub-purposes are: 
 
(1) The study argues the reason-dialogue interaction and predict-oriented interaction have 
different instructional values. The former is beneficial for linking new knowledge with existing 
schema at the initial animation learning for weak learners, while the latter is beneficial at the 
later animation learning to verify understanding learned previously. Accordingly, the first sub-
purpose is to investigate if the reason-predict-combination interaction approach leads to greater 
learning outcomes than the other interaction approaches.  
 
(2) It might be tiring to iteratively generate reasons already learned, consequently reducing 
learning motivation and learn less. Hence, the second sub-purpose is to investigate if the pure-
reason-dialogue interaction approach motivates less mental effort investment and less 
perceived usefulness than the reason-predict-combination interaction approach in a whole. 
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(3) An improper interaction strategy used at the beginning might negatively affect the entire 
learning process by inducing extraneous mental load, increasing processing difficulty, and 
interfering systemic knowledge construction. According, the third sub-purpose is to investigate 
if the predict-oriented interaction causes higher degrees of learner’s perception on content 
difficulty and mental effort demand, and a less degree of usefulness perception.   
 
 

Methodology 
 

Participants 
 
Participants were students enrolled in two classes of introductory data structures course of a 
university in Taiwan. They were taught by the same instructor. Because the target students of 
the current study were weak learners who had difficulty in comprehension of data structures, 
the instructor of the two participating classes determined students as weak learners of data 
structures based on impression of poor performance in classroom discussion and low scores in 
weekly quizzes and the mid-term exam. A total of 70 weak learners consisting of 51 males and 
19 females with a mean age of 20.7 (range from 19 to 22) years old took part in this study. They 
volunteered to participate in this study for two extra credit points of the course. The large 
majority of the population was sophomores (97%). 
 
 
Design 
 
The experiment was a between-subject design with participants randomly assigned into one of 
three experimental conditions: pure-reason-dialogue interaction (n = 24), predict-orientated 
interaction (n = 23), and reason-predict-combination interaction (n = 23). Each participant 
received two animations and two transfer tests and learning experience surveys. See Figure 1 for 
an overview of the design.  
 

 
Figure 1. Overview of Experimental Design and Procedure 
 
 
The Animation Learning Program 
 
A web-based learning program consisted of two animations teaching AVL-tree insertion 
algorithm. Each animation was broken into four segments to allow learners to control animation 
presentation pace based on their own learning speed. The algorithm taught in the second 
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animation was more complex than the first animation because of a greater amount of nodes and 
height of the tree. For the research purpose, three program versions were built. In all versions, 
the program delivered the same two narrative animations, yet only differed in interaction 
approaches. They were pure-reason-dialogue interactions, predict-oriented interactions, and 
reason-predict-combination interactions versions.  
 
First, version pure-reason-dialogue interactions offered only one type of interactions -reasoning 
dialogue- through the two animations. In pure-reason-dialogue interactions version, the 
program segment-by-segment prompts learners to reason the algorithm acting on the animation 
by completing fill-in-the-blank reasoning statements.  
 
Second, in version predict-oriented interactions, primary interactions focus on predicting 
algorithm operations up-playing in the following segment. In the predict-oriented interactions 
version, the program would go on prompting the learner to predict following animation actions 
until an incorrect prediction was made. Once incorrect prediction was made, the program plays 
correct algorithm procedures and prompts the learner to reason the animation just watched.  
 
Third, the reason-predict-combination interactions version offered pure-reason-dialogue 
interaction in the first animation learning, and served predict-oriented interaction in the second 
animation learning. Figure 2 and 3 present two screenshots: one of the reason-dialogue 
interaction and one of the predict-oriented interaction. 
 

 

 
 
Figure 2. Screenshot of a Reason-dialogue Interaction 
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Figure 3. Screenshot of a Predict-oriented Interaction 

 
 

Measures 
 
Knowledge Transfer Test 

 
To assess the extent of understanding the animations, two isomorphic knowledge-transfer tests 
were designed and administered right after the first and the second animations learning 
respectively. Both knowledge-transfer test consisted of a near-transfer question and a far-
transfer question. The near-transfer question was similar to the example demonstrated in the 
animation. The far-transfer question was a question that required students to amend the 
algorithm taught in the animation in order to solve the given problem. Answers were scored as 
zero point for an incorrect answer or one point for a correct answer. Overall, a maximum of three 
points was achievable for the near-transfer question and far-transfer question, respectively. 
Examples of questions are as follows: ‘What is the sum of balance factors of all nodes in the tree 
after the key adds into the tree?’, ‘What are the critical nodes that need to rotate to restore the 
property of AVL-tree’, and ‘Draw out the AVL tree after the insertions of following keys.’ 
Questions in the first and the second knowledge-transfer tests were different in surface but 
isomorphic.  

 
 

Learning Process Survey 
 
Apart from learning outcomes, the quality of learning process is also important, which would 
affect learners’ attitude to the subject and intention to re-use the program. The learning process 
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quality was therefore surveyed. This study surveyed three aspects of learning process. They are 
learner’s perceived content difficulty, mental effort invested for learning, and usefulness of the 
interactivity of the animation. The survey instrument consisted of three items, where one item 
measured one aspect of the learning process quality (see Table 1). The items measuring content 
difficulty and mental effort invested for learning were adapted from a widely used existing 
questionnaire of (Gerjets, Scheiter, Opfermann, Hesse, & Eysink, 2009). For the instrument, 
students answered each item on a seven point Likert-type scale from 1 equaling ‘extremely low’ 
to 7 equaling, ‘extremely high’. 

 
Table 1. Items of the Learning Experience Questionnaire (Translated Version) 
 

Content difficulty How easy or difficult do you consider AVL tree insertion 
at this animation? 

Mental effort spent Indicate on the scale the amount of effort you exerted to 
learn with the animation? 

Usefulness of interactions Indicate on the scale the extent of usefulness of the 
interactions in this animation? 

 
 
Procedures 
 
The study consisted of three main steps. First, all participants were given 15 minutes to read a 
description of 443 words and three figures introducing what an AVL tree is and how AVL trees 
rotate to restore the height-balance property. The description was given to warm up students’ 
prerequisite knowledge for the animation program. Second, all participants were randomly 
assigned into one of the three experimental conditions. Based on a pilot study, all participants 
were given 15 minutes to interact with each animation of their respective version of animation 
program. They were instructed to carefully study the animation because a test would be 
administered after completing one animation learning. Third, right completion of an animation 
learning, all students were asked to rate their animation learning experience, and took a 
knowledge transfer test. In total, two animations were learned, and the learning-experience 
surveys and knowledge-transfer tests were administered twice. 

 
 

Data Analysis 
 
Data were analyzed in five repeated-measures analyses of variance (ANOVA) to determine 
experimental effects on learning outcome and learning process with near-transfer score, far-
transfer score, perceived difficulty of the learning content, mental effort investment, and 
perceived usefulness of the interaction as dependent variables, interaction approach (pure-
reason-dialogue, predict-oriented, reason-predict-combination) as a between subjects variable, 
and time period (test 1 and test 2) as a within subjects variable. All tests of significance were run 
at the .05 level, indicating significant difference (Keppel, 1991).  

 
 

Findings 
 
The results are divided into two sections: learning transfer outcomes and learning process 
quality of the animation study. In the section of results of learning outcome tests, students’ 
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performance on near-transfer tests and far-transfer tests right after animation 1 and 2 learning 
were examined. The section of results of learning process survey reposts the effects of different 
interaction approaches on students’ perceived difficulty of the animations, mental effort 
expenditure, and perceived usefulness of the interaction approach they received. Table 2 
presents the relevant descriptive statistics among the three experimental groups regarding near-
transfer scores, far-transfer scores, perceived difficulty of the animation, mental effort 
expenditure, and perceived usefulness of the interaction received. Furthermore, the results of 
post-hoc multiple comparisons with Bonferroni-method analysis were summarized in Table 3. 
 
Table 2. Descriptive Statistics on Analysis of Animation Learning Effects among Different 
Interaction Approaches 
 

Research variable  Test 1  Test 2 

  Mean SD  Mean SD 

Pure-reason-dialogue interaction       
  Near-transfer score  2.38 .71  2.46 .66 
  Far-transfer score  1.25 .74  1.25 .79 
  Perceived difficulty  5.29 .91  3.83 1.24 
  Mental effort expenditure  5.17 1.34  3.83 .96 
  Perceived usefulness  5.08 1.21  3.78 1.25 

Reason-predict combination 
interaction 

      

  Near-transfer score  2.26 .69  2.52 .73 
  Far-transfer score  1.22 .85  2.09 .90 
  Perceived difficulty  5.39 .99  5.17 .93 
  Mental effort expenditure  5.21 1.13  5.43 1.04 
  Perceived usefulness  5.04 1.15  5.70 .97 

Predict-oriented interaction       
  Near-transfer score  1.48 .90  2.09 .85 
  Far-transfer score  0.91 .60  1.17 .98 
  Perceived difficulty  6.26 .75  5.65 .93 
  Mental effort expenditure  5.90 .81  5.78 1.09 
  Perceived usefulness  3.35 1.11  3.87 1.18 

 
 
Results of Learning Outcome Tests 
 

Using repeated-measures ANOVA, a significant difference was identified in the near-transfer 
mean score, F(2, 67) = 7.63, MSE = 5.98, p = 0.001, among students of the three different 
interaction conditions. A post-hoc multiple comparisons with Bonferroni method analysis 
showed that students in the conditions pure-reason-dialogue interaction and reason-predict-
combination interaction had much higher near-transfer performance scores than students in the 
condition predict-orientated interaction (p = 0.003 and p = 0.005, respectively).  
 
Regarding far-transfer performance, the result of repeated-measures ANOVA revealed there 
exists significant effect of the animation interaction approach, (F(2, 67) = 5.34, MSE = 4.41, p = 
0.007). Bonferroni-method post-hoc tests revealed that students in the condition reason-
predict-combination interaction had higher far-transfer performance scores than students in the 
condition predict-orientated interaction (p = 0.006). 
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The result of post-hoc comparisons on the learning outcome scores suggests that reason-predict-
combination interaction is a better interaction design in animation learning because it lead 
students to superior near- and far-transfer performance. 
 

 
Results of Learning Process Surveys 
 

Through repeated measures ANOVA, significant differences were found in mean perceived 
animation difficulty (F(2, 67) = 25.92, MSE = 22.85, p < 0.000), mental effort expenditure (F(2, 
67) = 12.29, MSE = 21.14, p = 0.000), and perceived usefulness of the interaction (F(2, 67) = 29.72, 
MSE = 35.70, p = 0.000) among participants in the three experimental conditions as 
operationalized in the study. 
 
Bonferroni-method post-hoc tests demonstrated that participants in predict-oriented interaction 
condition rated higher perceived animation difficulty than those in pure-reason-dialogue 
interaction (p = 0.000) and in reason-predict-combination interaction (p = 0.003) conditions, and 
participants in reason-predict-combination interaction condition had higher perceived animation 
difficulty than those in the pure-reason-dialogue interaction condition (p = 0.001). Regarding 
mental effort expenditure, the reason-predict-combination interaction and the predict-oriented 
interaction groups rated higher degrees than the pure-reason-dialogue interaction group (p = 
0.01 and p = 0.000, respectively). In terms of perceived usefulness of the interaction, the reason-
predict-combination interaction group rated higher usefulness degrees than the pure-reason-
dialogue interaction (p = 0.000) and the predict-oriented interaction (p = 0.000) groups, and the 
pure-reason-dialogue interaction group rated higher than the predict-oriented interaction group 
(p = 0.001). 
 
The result of post-hoc comparisons regarding to the learning process variables implies that 
reason-predict-combination interaction in general is superior to the other two interaction 
approaches because of the highest perceived usefulness of interaction, lower perceived content 
difficulty than predict-oriented interaction, and more mental effort involvement than pure-
reason-dialogue interaction.  

 
Table 3. Post-hoc Multiple Comparisons 
 

Dependent 
variable 

interaction Mean 
difference  

Std. 
error 

Sig. 95% Confidence 
interval 

Post hoc 
analysis 

 (I) (J) (I-J)   Lower  
bound 

Upper 
bound 

 

Near 
transfer 

RP R -.0254 .18256 1.000 -.4736 .4229  

RP P .6087* .18449 .005 .1557  1.0617 RP > P 

R P .6341* .18256 .003 .1858 1.0823 R > P 

Far transfer RP R .4022 .18753 .107 -.0583 .8627  

RP P .6087* .18952 .006 .1433 1.0741 RP > P 

R P .2065 .18753 .824 -.2540 .6670  

Perceived 
difficulty 

RP R .7201* .19371 .001 .2444 1.1958 RP > R 

RP P -.6739* .19576 .003 -1.1546 -.1932 RP < P 

R P -1.3940* .19371 .000 -1.8697 -.9184 R < P 

Mental 
effort 

RP R .8261* .27057 .010 .1617 1.4905 RP > R 

RP P -.5000 .27344 .216 -1.1714 .1714  

R P -1.3261* .27057 .000 -1.9905 -.6617 R < P 
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Perceived 
usefulness 

RP R .9321* .22615 .000 .3767 1.4874 RP > R 

RP P 1.7609* .22854 .000 1.1997 2.3221 RP > P 

R P .8288* .22615 .001 .2735 1.3841 R > P 

Note: R = pure-reason-dialogue; RP = reason-predict-combination; p = predict-oriented. 
*The mean difference is significant at the .05 level. 

 
 

Discussion and Conclusions 
 
This study investigated how interactions can be made more beneficial through their adaptation 
to students’ progress in cognitive skills. This study designed three interaction approaches and 
implemented an experiment to test which interaction approach is most beneficial for weak 
learners in a complex animation learning context such as instructing data-structures. This study 
found that the interaction approach reason-predict-combination led weak learners to the 
greatest learning-transfer performance and was rated by weak learners the most useful for 
helping understanding the animation content, though it did not significantly reduce perceived 
content difficulty and mental effort demand as compared to other interaction approaches. These 
results could be interpreted that that reason-predict-combination interaction dynamically 
adjusted interaction strategy to fit into the knowledge level and learning potential of the learner, 
maintained the interactive activities on a challengeable level (not too easy to get tired of the 
interaction and not too difficult to respond to the interaction) so that it successfully encouraged 
the learner keeping investing effort on refining their cognitive skills, hence resulting in superior 
learning outcomes to their counterparts instructed by other interaction approaches. 
 
The results also indicate that the pure-reason-dialogue interaction led to good near-transfer 
performance but had little effects on far-transfer learning. Weak learners receiving pure-reason-
dialogue interaction in the first animation learning had superior near-transfer performance to 
their counterparts in the predict-oriented interaction condition. However, weak learners who 
continued receiving pure-reason-dialogue interaction in the second animation learning learned 
little, no significant improvement on both near- and far-transfer scores. Additionally, data of the 
learning process surveys indicate that students in the pure-reason-dialogue interaction condition 
perceived less content difficulty and spent less mental effort in the second animation learning 
than they did in the first animation learning. An explanation for the fading effect of the pure-
reason-dialogue interaction approach might be that fixed interactive activities might lose 
students’ motivation and attention to the learning content so that they ignored the diversity 
between animations and learned in a cognitive economy way (less mental effort investment), 
consequently little knowledge acquisition. 
 
Furthermore, the current study found that the predict-oriented interaction approach was least 
effective for weak learners through the entire animation learning phases. Students in the predict-
oriented interaction condition performed poorest in both near-and far-transfer tests, and 
students reported that predicting tasks were very mental demanding, they increased learning 
difficulty, and they were least useful for assisting understanding. These findings are in line with 
Yeh et al.’s (2010) findings that predict-oriented interaction approach is not a good teaching 
strategy for learners with weak knowledge base of the learning subject. The current study further 
indicates that weak learners hardly not benefit from predict-oriented interaction because they 
usually have not enough knowledge to perform meaning prediction, at the most time the 
predicting task only bring about trial-and-error guessing, little help for deep understanding. The 
predict-oriented interaction promoted cognitive skills development only if the learner had solid 
fundamental knowledge about the subject. This claim was supported by the current finding that 
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students who had good near-transfer scores received predict-oriented interaction had superior 
far-transfer performance to their counterparts continuing receiving pure reasoning tasks.  
 
This study contributes to interactive instructional animation research by providing empirical 
evidences that an interaction approach varied along with learning progress is superior to fixed, 
single-strategy interaction approaches. This study specifically suggests a varied interaction 
approach useful for weak learners in complex animation learning. The findings imply that an 
interaction strategy is not absolutely useful or unhelpful. It depends on when to use to whom. 
An interaction strategy useful at the initial learning phase is possibly fading its effectiveness at 
the later learning phase. On the other hand, interactions un-tailored to the learner at the initial 
animation learning might be useful when being applied at the later learning phase.  
 
A practical implication for instructional designers is that it is not necessary to make the animation 
to fully narrate and act out the entire instructional content; the design should focus on creating 
an interactive environment where the learner and the animation can work together to 
cooperatively generate the to-be-learned knowledge. Although varied interactions have been 
recognized a useful instructional strategy, an interaction strategy should not be randomly 
selected and delivered to the learner, they should be served in accordance with learning progress 
in order to better motivate learners to continuously invest effort to learn, and help learners 
systemically develop near transfer and far transfer abilities.     
 
Finally, there are some possible limitations to the current study that should be addressed in the 
future research. Meanwhile, the current study assessed interaction approached in a subject, 
which might limit the generalizability of the research findings. It is suggested that more 
educational contexts be experimented to provide additional empirical evidence. In addition, in 
the current study, the time on interacting with an animation was limited in 15 minutes. The 
interaction effects may be different when the learners have more time to interact with each 
animation, or when the learner has the free to control the interacting time on one animation. 
Future study should address the issue of interacting time. Moreover, only three interaction 
approaches were compared in the current study. Future research could be conducted to examine 
more interaction approaches in effects of cognitive skills development and learning process 
variables for different characteristics of learners. 
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